Size Effect in One-dimensional NbSe₃ and NbSe₂ Z. L. Xiao^{a,b}, Y. S. Hor^b, U. Welp^b, Y. Ito^{a,b}, U. Patel^{a,b}, R. E. Cook^b, J. F. Mitchell^b, and W. K. Kwok^b ^aDepartment of Physics, Northern Illinois University ^bMaterials Science Division, Argonne National Laboratory ## **Motivation** - Niobium triselenide (NbSe₃): a model system for investigating charge-density-waves (CDWs). - Niobium diselenide (NbSe₂): a conventional superconductor with rich vortex physics. - Exploring phenomena and physics in pristine crystals at the mesoscopic scale. - Developing new approaches to synthesize one dimensional (1D) crystals. ## **Major Accomplishments** - ➤ NbSe₃ nanowires and nanoribbons synthesized through direct reaction of Nb and Se powders - ➤ NbSe₂ nanowires and nanoribbons converted from NbSe₃ precursors. - ➤ Size effects observed in both CDW and superconducting (SC) systems. ## **Future Directions** NbSe₃ - CDW phase transitions at various geometries and sizes - CDW pinning mechanisms at the nanoscale NbSe₂ - Phase diagrams of normal~superconducting transitions of nanowires with various cross-section sizes - Thermal and quantum phase slips - > Mechanisms for current-induced breakdown of superconductivity - > Dynamics of a few vortex rows in nanoribbons "few vortex rows" superconductor Y. S. Hor et al., Applied Physics Letters 87, 142506 (2005)